Mathematical Functions  

Sample (illustrates interpolations): KwrInterpolations.CATPart

Note that the input of the cosine function must be an angle despite its signature that allows real numbers. As a consequence, cos(3.14) for example is equivalent to cos (3.14 * 1rad) in the Formula editor. However a warning is displayed. Note that this applies also to the sinus and the tangent functions.
 
  • abs(Real): Real
    Calculates the absolute value of the argument.
  • ceil(Real): Real
    Returns the smallest integer value that is greater than or equal to the value specified in the argument.
  • floor(Real):Real
    Returns the largest integer value that is less than or equal to the value specified in the argument.
  • int(Real):Real
    Returns the integer part of the argument.
  • min(Real,Real):Real, max(Real,Real)
    Returns the minimum or maximum of a set of values specified in the argument.
  • sqrt(Real):Real
    Returns the square root.
  • log(Real):Real
    Returns the logarithm.
  • ln(Real):Real
    Returns the natural logarithm.
  • round(Real):Real
    Round rounds numbers of the form x.5 toward the nearest even integer.
  • round(Real, String, Integer):Real
    Returns a rounded number. This method is available for the types requiring units (Length, Angle, ...). 
    • Real is the real number that you want to round (for example 13.552).
    • String is the unit (for example "mm").
    • Integer corresponds to the number of digits that you want to display after the dot.
A dimensioned value is required for the round function to work properly. Please find here below some examples on how the Round function works:
  • round (12.333mm,"mm",1) will return 12.3 for the value is a length
  • round (12.333mm+1mm,"mm",1) will display an error for the sum result is a non-dimensioned real value
  • round (-12.333mm,"mm",1)will return an error for the subtraction result is a non-dimensioned real value

The two last examples results using the + / - arithmetic operators may seem strange. However, this should be considered as a standard behavior. Beware that using the + / - arithmetic operators will always return a non-dimensioned value. When using this function, a parameter is logically selected as input so the + / - issue should not be recurrent in this context.

  • exp(Real):Real
    Returns the exponential.
  • LinearInterpolation(arg1:Real, arg2:Real, arg3:Real) : Real
    Must be used when creating a parallel curve from a law.
    Example:
    1 - Create a line in the Generative Shape Design workbench
    2 - Access the Knowledge Advisor workbench and create the law below:
    FormalReal.1 = LinearInterpolation(1,9,FormalReal.2)
    3 - Back to the Generative Shape Design, create a parallel curve. Select the Law mode and specify the law above as the one to be applied.
  • CubicInterpolation(arg1:Real, arg2:Real, arg3:Real) : Real
    Must be used when creating a parallel curve from a law.
    Example:
    1 - Create a line in the Generative Shape Design workbench
    2 - Access the Knowledge Advisor workbench and create the law below:
    FormalReal.1 = CubicInterpolation(1,50,FormalReal.2)
    3 - Back to the Generative Shape Design, create a parallel curve. Select the Law mode and specify the law above as the one to be applied.
  • mod(Real,Integer): Real
    Gives the remainder on division of Real by Integer. The returned value is of integer type.
    Syntax: mod(Real,Integer):Real
    Sample: Mod.CATPart
  • Cos(Real):Real, cosh (Real): Real
    Calculates the cosine(cos) or hyperbolic cosine(cosh).
    Example
    Real.1 = cos(PI*1rad/4)
    Real.1 = cos(45deg)
  • tan(Real): Real, tanh(Real): Real
    Calculates the tangent(tan) or hyperbolic tangent (tanh).
  • sin(Real):Real, sinh(Real):Real
    Calculates the sine or hyperbolic sine.
  • asin(Real):Real, asinh(Real):Real
    Calculates the arcsine or hyperbolic arcsine.
  • acos(Real):Real, acosh(Real):Real
    Calculates the arccosine or hyperbolic arccosine.
  • atan(Real):Real, atanh(Real):Real
    Calculates the arctangent or hyperbolic arctangent.
  • max(arg1: Real, arg2: Real, ...):Real
    Returns the highest parameter.
  • min(arg1: Real, arg2: Real, ...):Real
    Returns the smallest parameter.
  • not(Boolean):Boolean
    Verifies the contrary of the expression between parentheses.
    Example: not(A==B) is the equivalent of A<>B.
For these methods to be efficient, use real numbers only.