|
- abs(Real): Real
Calculates the absolute value of the argument.
|
- ceil(Real): Real
Returns the smallest integer value that is greater than or equal to the
value specified in the argument.
|
- floor(Real):Real
Returns the largest integer value that is less than or equal to the value
specified in the argument.
|
- int(Real):Real
Returns the integer part of the argument.
|
- min(Real,Real):Real, max(Real,Real)
Returns the minimum or maximum of a set of values specified in the
argument.
|
- sqrt(Real):Real
Returns the square root.
|
- log(Real):Real
Returns the logarithm.
|
- ln(Real):Real
Returns the natural logarithm.
|
- round(Real):Real
Round rounds numbers of the form
x.5 toward the nearest even integer.
|
- round(Real, String, Integer):Real
Returns a rounded number. This method is available for the types
requiring units (Length, Angle, ...).
- Real is the real number that you want to round (for example
13.552).
- String is the unit (for example "mm").
- Integer corresponds to the number of digits that you want to
display after the dot.
|
|
|
A dimensioned value is
required for the round function to work properly. Please find here below
some examples on how the Round function works:
- round
(12.333mm,"mm",1) will return 12.3 for the
value is a length
- round
(12.333mm+1mm,"mm",1) will display an
error for the sum result is a non-dimensioned real value
- round
(-12.333mm,"mm",1) will return an error
for the subtraction result is a non-dimensioned real value
The two last examples results using the + / - arithmetic
operators may seem strange. However, this should be considered
as a standard behavior. Beware that using the + / - arithmetic
operators will always return a non-dimensioned value. When using
this function, a parameter is logically selected as input so the
+ / - issue should not be recurrent in this context. |
|
|
- exp(Real):Real
Returns the exponential.
|
- LinearInterpolation(arg1:Real, arg2:Real,
arg3:Real) : Real
Must be used when creating a parallel curve from a law.
Example:
1 - Create a line in the Generative Shape Design workbench
2 - Access the Knowledge Advisor workbench and create the law below:
FormalReal.1 = LinearInterpolation(1,9,FormalReal.2)
3 - Back to the Generative Shape Design, create a parallel curve. Select
the Law mode and specify the law above as the one to be applied.
|
- CubicInterpolation(arg1:Real, arg2:Real, arg3:Real)
: Real
Must be used when creating a parallel curve from a law.
Example:
1 - Create a line in the Generative Shape Design workbench
2 - Access the Knowledge Advisor workbench and create the law below:
FormalReal.1 = CubicInterpolation(1,50,FormalReal.2)
3 - Back to the Generative Shape Design, create a parallel curve.
Select the Law mode and specify the law above as the one to be applied.
|
- mod(Real,Integer): Real
Gives the remainder on division of Real by
Integer. The returned value is of integer type.
Syntax: mod(Real,Integer):Real
Sample:
Mod.CATPart
|
- Cos(Real):Real, cosh (Real): Real
Calculates the cosine(cos) or hyperbolic cosine(cosh).
Example
Real.1 = cos(PI*1rad/4)
Real.1 = cos(45deg)
|
- tan(Real): Real, tanh(Real): Real
Calculates the tangent(tan) or hyperbolic tangent (tanh).
|
- sin(Real):Real, sinh(Real):Real
Calculates the sine or hyperbolic sine.
|
- asin(Real):Real, asinh(Real):Real
Calculates the arcsine or hyperbolic arcsine.
|
- acos(Real):Real, acosh(Real):Real
Calculates the arccosine or hyperbolic arccosine.
|
- atan(Real):Real, atanh(Real):Real
Calculates the arctangent or hyperbolic arctangent.
|
- max(arg1: Real, arg2: Real, ...):Real
Returns the highest parameter.
|
- min(arg1: Real, arg2: Real, ...):Real
Returns the smallest parameter.
|
- not(Boolean):Boolean
Verifies the contrary of the expression between parentheses.
Example: not(A==B) is the equivalent of A<>B.
|